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1. INTRODUCTION

Simulation of deformable solids was introduced to computer graph-
ics by Terzopoulos et al. [1987] and Terzopoulos and Fleischer
[1988]. The quest for visual realism has spawned an ever grow-
ing interest in simulation techniques capable of accommodating
larger, more detailed models. Several researchers have explored
approaches such as adaptivity [Debunne et al. 2001; Capell et al.
2002; Grinspun et al. 2002], reduced models [James and Fatahalian
2003; Barbic and James 2005], or shape matching [Müller et al.
2005; Rivers and James 2007] to accelerate the simulation of de-
tailed deformable models, while others used multicore platforms
[Hughes et al. 2007; Thomaszewski et al. 2007] to reduce simula-
tion times.
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Multigrid methods [Trottenberg et al. 2001; Brandt 1977] are
among the fastest numerical solvers for certain elliptic problems.
Due to their efficiency, multigrid methods have garnered attention
in the graphics community for a diverse spectrum of applications,
including deformable bodies and thin shell simulation [Green et al.
2002; Wu and Tendick 2004; Georgii and Westermann 2006, 2008],
mesh deformation [Shi et al. 2006], image editing [Kazhdan and
Hoppe 2008], biomedical simulation [Dick et al. 2008], geometry
processing [Ni et al. 2004], and in general-purpose GPU solvers
[Bolz et al. 2003; Goodnight et al. 2003].

We present a scalable framework for fast deformable model sim-
ulation based on multigrid techniques. We focus on the simulation
of large models with hundreds of thousands of degrees of free-
dom, and aim to create the ideal conditions for our method to scale
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favorably on shared memory multiprocessors with a large number
of cores. In addition, we accommodate models of arbitrary geome-
try, and our solver is equally effective even on near-incompressible
materials. Although such issues have been individually discussed
in the graphics community, we jointly address the challenges of ir-
regular geometry, near-incompressibilty, and parallel performance
without limiting our scope to smaller problems which can achieve
interactive performance with a broader variety of techniques. Our
solver accommodates the equations of 3D linear (or corotational)
elasticity as opposed to simpler elliptic systems (e.g., Poisson prob-
lems), and performs well for either dynamic or quasistatic sim-
ulation. In order to maximize performance, we adopt some less
common choices such as a staggered finite difference discretiza-
tion and a mixed formulation of the elasticity equations. We believe
these decisions are justified by our performance gains, scalability
and resilience to incompressibility. Our main contributions are as
follows.

—We introduce a novel, symmetric boundary discretization, en-
abling robust treatment of irregular geometry and efficient
smoothing of the boundary conditions.

—We show how to accommodate both linear and corotational lin-
ear elasticity within our framework, for the entire range of com-
pressible to highly incompressible materials.

—We demonstrate the mapping and favorable scalability of our
framework on multithreaded SMP platforms.

2. BACKGROUND

We represent the deformation of an elastic volumetric object using
a deformation function φ which maps any material point X of the
undeformed configuration of the object, to its position x in the de-
formed configuration, that is, x = φ(X). Deformation of an object
gives rise to elastic forces [Bonet and Wood 1997] which are ana-
lytically given (in divergence form) as f = ∇T P or, component-
wise fi = ∑

j∂ j Pij where P is the first Piola-Kirchhoff stress ten-
sor. The stress tensor P is computed from the deformation map φ.
This analytic expression is known as the elastic constitutive equa-
tion. We will henceforth adopt the common conventions of using
subscripts after a comma to denote partial derivatives, and omit
certain summation symbols by implicitly summing over any right-
hand side indices that do not appear on the left-hand side of a given
equation. Consequently, the previous equation is compactly written
fi = Pi j, j . The constitutive equation of linear elasticity is

P = 2με + λtr(ε)I or Pij = 2μεij + λεkkδij. (1)

In this equation, μ and λ are the Lamé parameters of the linear
material, and are computed from Young’s modulus E (a measure
of material stiffness) and Poisson’s ratio ν (a measure of material
incompressibility) as μ = E/(2 + 2ν), λ = Eν/((1 + ν)(1 − 2ν)).
Also, δij is the Kronecker delta, ε is the small strain tensor

ε = 1

2
(F + FT ) − I or εij = 1

2
(φi, j + φ j,i ) − δij, (2)

and F is the deformation gradient tensor, defined as Fij = φi, j .
Using (1) and (2) we derive the governing equations

fi = μφi, j j + (μ + λ)φ j,i j = Lijφ j . (3)

In this equation L = μ�I + (μ+λ)∇∇T is the partial differential
operator of linear elasticity. A static elasticity problem amounts to
determining the deformation map φ that leads to an equilibrium of
the total forces, that is, Lφ + f ext = 0, where f ext are the external
forces applied on the object. For simplicity, we redefine

Algorithm 1. Multigrid Correction Scheme – V(1,1) Cycle

1: procedure MULTIGRID(φ, f , L) � φ is the current estimate
2: uh ← φ, bh ← f � total of L+1 levels
3: for l = 0 to L−1 do
4: Smooth(L2l h ,u2l h ,b2l h)
5: r 2l h ← b2l h − L2l hu2l h

6: b2l+1h ←Restrict(r 2l h), u2l+1h ← 0
7: end for
8: Solve u2L h ← (L2L h)−1b2L h

9: for l = L−1 down to 0 do
10: u2l h ← u2l h+Prolongate(u2l+1h)
11: Smooth(L2l h ,u2l h ,b2l h)
12: end for
13: φ ← uh

14: end procedure

f = − f ext and the static elasticity problem becomes equivalent to
the linear partial differential equation Lφ = f .

2.1 Multigrid Correction Scheme

Multigrid methods are based on the concept of a smoother which is
a procedure designed to reduce the residual r= f −Lφ of the differ-
ential equation. For example, in a discretized system, Gauss-Seidel
or Jacobi iteration are common smoothers. An inherent property of
elliptic systems is that when the magnitude of the residual is small,
the error e = φ − φexact is expected to be smooth [Brandt 1986].
Smoothers are typically simple, local, and relatively inexpensive
routines which are efficient at reducing large values of the residual
(and, as a consequence, eliminating high frequencies in the error).
Nevertheless, once the high-frequency component of the error has
been eliminated, subsequent iterations are characterized by rapidly
decelerated convergence. Multigrid methods seek to remediate this
stagnation by using the smoother as a building block in a multi-
level solver that achieves constant rate of convergence, regardless
of the prevailing frequencies of the error. This is accomplished by
observing that any persistent lower-frequency error will appear to
be higher frequency if the problem is resampled using a coarser
discretization. By transitioning to ever coarser discretizations the
smoother retains the ability to make progress towards convergence.
The components of a multigrid solver are:

—discretizations of the continuous operator L at a number of dif-
ferent resolutions, denoted as Lh,L2h,L4h , etc. (where the su-
perscripts indicate the mesh size for each resolution).

—smoothing subroutine, defined at each resolution.

—prolongation and restriction subroutines. These implement an
upsampling and downsampling operation, respectively, between
two different levels of resolution.

—an exact solver, used for solving the discrete equations at the
coarsest level. As the coarse grid is expected to be small, any
reasonable solver would be an acceptable option.

Algorithm 1 gives the pseudocode for a V(1,1) cycle of the multi-
grid correction scheme, which is the method used in our article.

3. DISCRETIZATION

Our method uses a staggered finite difference discretization on
uniform grids, a familiar practice in the field of computational
fluid dynamics (e.g., Harlow and Welch [1965]). Although far less
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Fig. 1. Staggering of variables in 2D(left) and 3D(right). Equations
L1,L2,L3 are also stored on φ1,φ2,φ3 locations respectively.

widespread for the simulation of solids, this formulation was se-
lected for reasons of efficiency and numerical stability.

Use of regular grids. We discretize the elasticity problem on a
regular Cartesian lattice. Our deformable model is embedded in
this lattice, similar to the approach of Rivers and James [2007].
Although an unstructured mesh provides more flexibility, we opted
for a regular grid for economy of storage. For example, storing the
topology of a tetrahedral lattice could easily require 4–5 times more
than the storage required for the vertex positions, taking up valu-
able memory bandwidth. Additionally, the discrete PDE and trans-
fer operators are uniform across regular grids, eliminating the need
for explicit storage. Although not used in this article, adaptivity
can also be combined with regular grids; see, for example, Brandt
[1977].

Use of finite differences. Finite elements are arguably the most
common discretization method for elasticity applications in graph-
ics (see, e.g., O’Brien and Hodgins [1999]). Finite elements have
also been successfully combined with multigrid. However, we
based our method on a finite difference discretization for the
following reasons: Our method owes its good performance for
highly incompressible materials to a mixed formulation of elastic-
ity (Section 4.1). Although it is possible to combine this formula-
tion with finite elements (see, e.g., Brezzi and Fortin [1991]) it is
much simpler to implement it using finite differences. For regu-
lar lattices, both finite elements and finite differences are second-
order accurate discretizations away from the boundary, while both
are susceptible to degrading to first order near the boundaries as
discussed in Section 9.2. In addition, our finite difference scheme
leads to sparser stencils than finite elements: in our formulation of
3D linear elasticity, each equation has 15 nonzero entries, while
81 entries are required by a trilinear hexahedral finite element dis-
cretization, and 45 for BCC tetrahedral finite elements. This trans-
lates to a lower computational cost for a finite difference scheme.
Finally, as part of our contribution we derive a specific finite differ-
ence scheme that guarantees the same symmetry and definiteness
properties that are automatic with finite element methods.

Use of staggered variables. In a regular grid it would be most
natural to specify all components of the vector-valued deformation
map φ at the same locations, for example, at the nodes of the grid.
However, for Eq. (3) doing so may result in grid-scale oscillations,
especially for near-incompressible materials. This is qualitatively
analogous to an artifact observed in the simulation of fluids with
nonstaggered grids, where spurious oscillations may be left over in
the pressure field. For multigrid methods, such oscillatory modes
are problematic, as they may not respect the fundamental property
of elliptic PDEs that a low residual implies a smooth error, requir-
ing more elaborate and expensive smoothers to compensate. We
avoid this issue by adopting a staggered discretization (Figure 1),

Fig. 2. Discrete stencils for operators L1(left) and L2(right) of the PDE
system (3). The red and green nodes of the stencil correspond to φ1 and φ2

values, respectively. The dashed square indicates the center of the stencil,
where the equation is evaluated.

which is free of this oscillatory behavior. More specifically, φi vari-
ables are stored at the centers of grid faces perpendicular to the
Cartesian axis vector ei . For example, φ1 values are stored on grid
faces perpendicular to e1, that is, those parallel to the yz-plane. The
same strategy is followed in 2D, where faces of grid cells are now
identified with grid edges, thus φ1 values are stored at the center of
y-oriented edges, and φ2 values at the center of x-oriented edges.
We define discrete first-order derivatives using central differences

D1u[x, y, z] = u
[

x + 1

2
hx , y, z

]
− u

[
x − 1

2
hx , y, z

]

D2u[x, y, z] = u
[

x, y + 1

2
hy, z

]
− u

[
x, y − 1

2
hy, z

]

D3u[x, y, z] = u
[

x, y, z + 1

2
hz

]
− u

[
x, y, z − 1

2
hz

]

where (hx , hy, hz) are the dimensions of the background grid cells.
Second-order derivative stencils are defined as the composition of
two first-order stencils, that is, Dij = Di D j . An implication of these
definitions is that the discrete first derivative of a certain quantity
will not be collocated with it. For example, all derivatives of the
form Diφi are naturally defined at cell centers, while D1φ2 is lo-
cated at centers of z-oriented edges in 3D, and at grid nodes in
2D. However, derivatives are centered at the appropriate locations
for a convenient discretization of (3). In particular, all stencils in-
volved in the discretization of equation Li are naturally centered
on the location of variable φi . Thus, the staggering of the unknown
variables implies a natural staggering of the discretized differential
equations. Figure 2 illustrates this fact in 2D, where the discrete
stencils for the operators L1 and L2 from (3) are shown to be natu-
rally centered at φ1 and φ2 variable locations, respectively.

4. CONSTRUCTION OF THE SMOOTHING
OPERATOR

A majority of elastic materials of interest to computer graphics
(e.g., the muscles and flesh of animated characters) are ideally in-
compressible. A number of authors [Irving et al. 2007; Kaufmann
et al. 2008] have discussed the simulation challenges of near-
incompressible materials and proposed solutions. For a multigrid
solver, naive use of standard smoothers (e.g., Gauss-Seidel) in the
presence of high incompressibility could lead to slow convergence
or even loss of stability. Our proposed solution is computationally
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Fig. 3. Placement of pressures in 2D (left) and 3D (right).

inexpensive and achieves fast convergence independent of material
parameters.

4.1 Augmentation and Stable Discretization

When the Poisson’s ratio approaches the incompressible limit ν →
0.5, the Lamé parameter λ becomes several orders of magnitude
larger than μ. As a consequence, the dominant term of the elastic-
ity operator L = μ�I+(μ+λ)∇∇T is the rank deficient opera-
tor (μ+λ)∇∇T ; thus L becomes near-singular. More specifically,
we see that any divergence-free field φ will be in the nullspace
of the dominant term, that is, λ∇∇T φ = 0. Thus, a solution to
the elasticity PDE Lφ = f could be perturbed by a divergence-
free displacement of substantial amplitude, without introducing a
large residual for the differential equation. These perturbations can
be arbitrarily oscillatory, and lead to high-frequency errors that
the multigrid method cannot smooth efficiently or correct using
information from a coarser grid. Fortunately, this complication is
not a result of inherently problematic material behavior, but rather
an artifact of the form of the governing equations. Our solution
is to reformulate the PDEs of elasticity into an equivalent system
which does not suffer from the near-singularity of the original. This
stable differential description of near-incompressible elasticity is
adapted from the theory of mixed variational formulations [Brezzi
and Fortin 1991]. We introduce a new auxiliary variable p (which
we call pressure) defined as p = −(λ/μ)∇T φ = −(λ/μ)divφ.
We can write

Lφ = μ(�I + ∇∇T )φ + λ∇(∇T φ)

= μ(�I + ∇∇T )φ − μ∇p. (4)

Thus, the equilibrium equation Lφ = f is equivalently written as(
μ(�I+∇∇T ) −μ∇

μ∇T μ2

λ

) (
φ
p

)
=

(
f
0

)
. (5)

The top of system (5) follows directly from Eq. (4), while the bot-
tom is the definition of pressure p. Conversely, the original differ-
ential equation (3) can be obtained from (5) by simply eliminating
the pressure variable. Thus the augmented differential equation sys-
tem of (5) is equivalent to the governing equations of linear elastic-
ity. The important consequence of this manipulation is that this new
discretization is stable, in the sense that the system can be smoothed
with standard methods without leaving spurious oscillatory modes.
This property can be rigorously proved via Fourier analysis; we
can verify, however, that as λ tends to infinity, the term μ2/λ van-
ishes, and the resulting limit system is now nonsingular. In Sec-
tion 4.2 we describe a simple smoother, specifically tailored to Eq.
(5). The newly introduced pressure variables are also discretized
on an offset Cartesian lattice, with pressures stored in cell centers
(see Figure 3). Pressure equations are also cell centered. As was the
case with the nonaugmented elasticity equations, the staggering of

deformation (φ) and pressure (p) variables are such that all discrete
operators are well defined where they are needed.

4.2 Distributive Smoothing

The discretization of system (5) yields a symmetric, yet indefinite
matrix (discrete first-order derivatives are skew-symmetric). Al-
though this system has the stability to admit efficient local smooth-
ing, this cannot be accomplished with a standard Gauss-Seidel or
Jacobi iteration. Additionally, for a differential equation such as (5)
exhibiting nontrivial coupling between the variables φ1, φ2, φ3 and
p, a smoothing scheme which smoothes a given equation by updat-
ing several variables at once is often the optimal choice in terms of
efficiency [Trottenberg et al. 2001]. The technique we use in our
formulation is the distributive smoothing approach. This technique
was applied to the Stokes equation in Brandt and Dinar [1978]
while Gaspar et al. [2008] discussed its application to linear elastic-
ity. Let us redefine L to denote the augmented differential operator
of Eq. (5), and write u = (φ, p) for the augmented set of unknowns
and b = ( f , 0) for the right-hand side vector. Thus, system (5) is
written as Lu = b. Consider the change of variables(

φ
p

)
=

(
I −∇

∇T −2�

) (
ψ
q

)
, or u = Mv, (6)

where v = (ψ, q) is the vector of auxiliary unknown variables,
and M is called the distribution matrix. In accordance with our
staggered formulation, the components ψ1, ψ2, ψ3 of the auxiliary
vector ψ will be collocated with φ1, φ2, φ3, respectively, while q
and p values are also collocated. Using the change of variables of
Eq. (6), our augmented system Lu = b is equivalently written as
LMv = b. Composing the operators L and M yields

LM =
(

μ�I 0
μ

(
1 + μ

λ

)
∇T −μ

(
1 + 2μ

λ

)
�

)
. (7)

That is, the composed system is lower triangular, and its diago-
nal elements are simply Laplacian operators. This system can be
smoothed with any scheme that works for the Poisson equation, in-
cluding the Gauss-Seidel or Jacobi methods. In fact, the entire sys-
tem can be smoothed with the efficiency of the Poisson equation,
following a forward substitution approach, that is, we smooth all
ψ1-centered equations across the domain first, followed by sweeps
of ψ2, ψ3, and q-centered equations in sequence.While we do not
necessarily have the auxiliary variables (ψ, q) at our disposal, such
an explicit transformation is not necessary. Consider the Gauss-
Seidel iteration for the system Lu = b: At every step, we calculate
a point-wise correction to the variable ui , such that the residual of
the collocated equation Li will vanish. That is, we replace variable
ui with ui + δ (or u with u + δei ) such that

eT
i (b − L(u + δei )) = 0 ⇒ (

eT
i Lei

)
δ = eT

i (b − Lu).

The last equation is equivalent to Li iδ = r old
i or δ = r old

i /Li i , where
Li i is the i th diagonal element of the discrete operator and r old

i de-
notes the i th component of the residual. In an analogous fashion, a
Gauss-Seidel step on the distributed system LMv = b amounts to
changing ψi into ψi +δ (or v into v +δei ) such that the i th residual
of the distributed equation is annihilated.

eT
i (b − LM(v + δei )) = 0 ⇒ eT

i (b − L(u + δMei )) = 0

⇒ (
eT

i LMei
)
δ = eT

i (b − Lu) ⇒ δ = r old
i /(LM)i i

In this derivation the auxiliary vector v is only used in the form Mv
which is equal to the value of the original variable u. Thus, after
the value of δ has been determined, u is updated to u + δMei . The
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Fig. 4. Classification of cells, variables, and equations near the boundary.

computational cost of distributive smoothing is comparable to that
of simple Gauss-Seidel iteration, yet it allows efficient smoothing

Algorithm 2. Distributive Smoothing

1: procedure DISTRIBUTIVESMOOTHING(L,M,u,b)
2: fro v in {φ1, φ2, φ3, p} do � Must be in this exact order
3: fro i in Lattice[v] do � i is an equation index
4: r ← bi − Li · u � Li is the i th row of L
5: δ ← r/(LM)i i
6: u += δmT

i � mi is the i th row of M
7: end for
8: end for
9: end procedure

of the linear elasticity equations independent of Poisson’s ratio. We
summarize the distributive smoothing process in Algorithm 2.

5. TREATMENT OF BOUNDARIES

The previous sections did not address the effect of boundaries, in-
stead focusing on the treatment of the interior region. The efficiency
of the interior smoother can be evaluated using a periodic domain.
In fact, it is known [Brandt 1994] that a boundary value problem
can be solved at the same efficiency as a periodic problem, at the
expense of more intensive smoothing at the boundary. In theoreti-
cal studies, the computational overhead of this additional boundary
smoothing is often overlooked, as the cost of interior smoothing is
asymptotically expected to dominate. Nevertheless, practical prob-
lem sizes may never reach the asymptotic regime and slow, generic
boundary smoothers can pose a performance bottleneck. In this
section, we develop a boundary discretization strategy, including
a novel treatment of traction boundary conditions, that facilitates
the design of efficient and inexpensive boundary smoothers.

5.1 Domain Description

Our geometrical description of the computational domain is based
on a partitioning of the cells of the background grid (Figure 4).
Initially, cells that have an overlap with the simulated deformable
body are characterized as interior cells, otherwise they are desig-
nated exterior cells. Additionally, any cell can be user-specified to
be a constrained (or Dirichlet) cell, overriding any interior/exterior
designation this cell may otherwise carry. Dirichlet cells practi-
cally correspond to kinematically constrained parts of the object.
This classification into interior, exterior, and Dirichlet cell types
provides an intuitive way to specify the degrees of freedom of our
problem, and define their associated equations. We categorize dis-
crete variables and equations as follows.

Fig. 5. Left: Extent of distributive smoothing (interior region). Right:
Boundary region with some boxes used by the box smoother.

—Interior Variables and Equations. Any of the variables φ1, φ2, φ3

or p located strictly inside the interior region (i.e., either on an
interior cell center, or on the face between two interior cells) is
designated an interior variable. For every interior variable, we
label its collocated equation from (5) as an interior equation and
we include this equation as part of our discrete system. Locations
of interior variables and equations are depicted as red dots in
Figure 4.

—Boundary Variables and Equations. Certain interior equations
(near the boundary) have a discrete stencil that extends onto vari-
ables that are not interior variables themselves. We label these as
boudary variables. More specifically, a boundary variable is des-
ignated a Dirichlet boundary variable if it touches a Dirichlet cell
(either inside or on the boundary of one), otherwise it is desig-
nated a traction boundary variable. Dirichlet and traction bound-
ary variables are depicted as green and blue dots, respectively, in
Figure 4. Similar to interior variables, for every boundary vari-
able we add a boundary equation (or boundary condition) to our
discrete system, in order to have the same number of equations
as unknowns. Dirichlet variables are matched with a boundary
condition of the form φ(X) = c, while traction variables are as-
sociated with a condition of the form P(X)N = t , where N is
the surface normal (t = 0 corresponds to a free boundary).

—Variables that have not been designated interior or boundary are
labeled inactive and can be ignored (depicted as dashed circles in
Figure 4). No equation is added to our system for these inactive
grid locations.

5.2 A General-Purpose Box Smoother

Although a well-posed system can be constructed as described, the
distributive smoothing scheme is not valid near the boundary, as
the distribution extends outside the domain. In such situations a
box smoother [Brandt and Dinar 1978] is a broadly applicable so-
lution. This process amounts to collectively solving a number of
equations in a subdomain, simultaneously adjusting the values of
all variables within. Our complete smoothing procedure starts with
a boundary box smoothing sweep, proceeds with interior distribu-
tive smoothing, and finishes with a last boundary pass. An interior
equation is smoothed distributively if the stencil of its respective
equation in the composed system (LM)v = b only includes in-
terior variables, as illustrated in Figure 5 (left). For the boundary,
we use overlapping boxes that are two grid cells wide, and cen-
tered at the outermost layer of interior cells, as seen in Figure 5
(right). In our experiments the box smoother performed very well,
generally achieving near-optimal efficiency for the entire multigrid
scheme. In practice, however, this good convergence behavior came
at the cost of an enormous computational overhead. This added
cost stems from the need to solve a coupled linear system within
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each box. The computational effort spent on boundary smoothing
was often two orders of magnitude more than the cost of interior
smoothing on models with tens of thousands of vertices; although
the interior cost scales with volume and the boundary cost scales
with surface area, even with million-vertex models the cost of the
boundary smoother would still dominate by a factor of 10. We ad-
dress this issue in the next section by designing an effective, yet
simple and inexpensive boundary smoother.

5.3 A Fast Symmetric Gauss-Seidel Smoother

We propose a novel formulation that enables equation-by-equation
smoothing that is both efficient and inexpensive. The main obstacle
to efficient equation-by-equation boundary smoothing schemes is
lack of symmetry, definiteness, or diagonal dominance. Addition-
ally, discretizations of the boundary conditions (especially traction)
can easily result in loss of symmetry. An alternative local smoother
is the Kaczmarz method [Trottenberg et al. 2001], which does not
require symmetry or definiteness; we have nevertheless found it to
converge extremely slowly, requiring a very large number of itera-
tions. Our solution stems from a new perspective of the constitutive
equations and the boundary conditions.

We will show that it is possible to construct a symmetric nega-
tive definite discretization that uses only interior variables (as de-
fined in Section 5.1). First, we revisit the constitutive equation of
linear elasticity (1). The scalar coefficient tr(ε) appearing in Eq. (2)
is equivalently written as tr(ε)=∑

i εi i=
∑

i φi,i − d , where d=tr(I)
equals the number of spatial dimensions. Similarly, the last equa-
tion of system (5) is equivalent to −(μ/λ)p = ∇T φ = ∑

i φi,i .
Thus, we have tr(ε) = −(μ/λ)p − d, and Eq. (1) becomes

P = μ(F + FT ) − μpI − (2μ + dλ)I. (8)

The difference between Eqs. (1) and (8) is that the original defini-
tion of stress is physically valid for any given deformation field φ
while the formulation of Eq. (8) will correspond to the real value of
stress only when the augmented system (5) is solved exactly. In de-
tail, the diagonal and off-diagonal components of the stress tensor
P are given as

Pii = 2μφi,i − μp − (2μ + dλ)

Pij = μ(φi, j + φ j,i ). (i �= j)

The finite difference approximations of these stress values are

Pii (X) = 2μ
φi

(
X+ hi

2 ei
) − φi

(
X− hi

2 ei
)

hi

−μp(X) − (2μ + dλ) (9)

Pij(X) = μ

[
φi

(
X+ h j

2 e j
) − φi

(
X− h j

2 e j
)

h j

+ φ j
(
X+ hi

2 ei
) − φ j

(
X− hi

2 ei
)

hi

]
. (10)

The staggering of the position and pressure variables implies a nat-
ural placement of the stress values, in accordance with Eqs. (9) and
(10). Diagonal stress components are always located at cell centers,
while off-diagonal components Pij(i �= j) are node-centered in 2D
and edge-centered in 3D (see Figure 6, right). In a fashion similar to
our classification of variables and equations, we label stresses as in-
terior if their discrete stencils (defined in Eqs. (9) and (10)) contain
only interior or Dirichlet variables, while boundary stresses include
at least one traction boundary variable in their stencil. Interior and

Fig. 6. Left: Equations L1, L2 expressed as divergence stencils. Right:
Placement of the components of stress tensor P in 3D.

Fig. 7. Left: Stress variables used in the divergence form of certain interior
equations. Boundary stress variables are colored red, interior stresses are
green. All boundary stresses can be set to a specific value using a traction
condition from a nearby boundary. Right: Interior and boundary gradients
used in pressure equations.

boundary stresses are depicted in green and red, respectively, in
Figure 7 (left).

We can verify that the position equations L1,L2,L3 of system
(5) are equivalent to the divergence form Li u=∂ j Pij, where P is
now given by the new definition of Eq. (8). The discrete stencils for
these equations can be constructed as a two-step process. First, we
construct a finite difference discretization for each equation fi =
∂ j Pij, treating every value Pij appearing in this stencil as a separate
variable.

fi (X) =
d∑

j=1

Pij
(
X+ h j

2 e j
) − Pij

(
X− h j

2 e j
)

h j
(11)

See Figure 6 (left) for a visual illustration of this divergence stencil
in 2D. As a second step, we replace the stress values Pij in Eq. (11)
using either a finite difference approximation, or a boundary con-
dition. Each of the stress values Pij (4 stresses in 2D, 6 in 3D) can
either be an interior or a boundary stress. For all interior stresses,
we simply substitute the appropriate finite difference stencil, from
Eq. (9) or (10). For boundary stresses, instead of computing them
using a finite difference, we assume that their value is known by
virtue of a traction boundary condition, thus this value can be sim-
ply substituted in Eq. (11). The assumption that every boundary
stress is determined by a traction boundary condition is justified as
follows.

—Stress variables of the form Pij(i �= j) are centered on grid
edges in 3D (see Figure 6, right) and on grid nodes in 2D. This
stress variable appears in the finite difference approximation of
the term ∂ j Pij in the interior equation Li . Let X∗ be the location
where equation Li is centered. The stress variable Pij is located
one half of a grid cell away from X∗, along the direction e j .
Without loss of generality, assume Pij is located at X∗+ h j

2 e j . Pij
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neighbors exactly four cells; out of those, the two centered at
X∗ ± hi

2 ei are interior cells, since we assumed that Li was an
interior equation. The two other neighbor cells of Pij are cen-
tered at X∗ ± hi

2 ei + h j e j . We can verify that if those two cells
were interior or Dirichlet, Pij would have been an interior stress.
Thus, Pij is a boundary stress and one of the cells centered at
X∗ ± hi

2 ei + h j e j must be exterior. This means that Pij is inci-
dent on a traction boundary face perpendicular to the direction
e j , and there exists a traction condition Pe j = t that specifies a
value Pij = ti for this component of the stress. For a free bound-
ary we simply have Pij = 0.

—Stress variables of the form Pi i are located at cell centers, and
appear in the finite difference approximation of ∂i Pii in the inte-
rior equation Li . Similar to the previous case, Pii is located one
half grid away from the location X∗ of Li along the direction
ei . Without loss of generality, assume Pii is located at X∗+ hi

2 ei .
From (9) we see that the stencil for Pii contains the variables
φi (X∗), p(X∗+ hi

2 ei ) which are both interior (since Li is inte-
rior) and the one additional variable φi (X∗+hi ei ). Pii would be
a boundary stress only if φi (X∗+hi ei ) was an exterior variable;
in this case Pii would have been “near” (specifically half a cell
away from) a traction boundary face normal to ei . Once again,
we will use the traction condition associated with this boundary
to set Pii = ti (or Pii = 0 for a free boundary). The subtlety of
this formulation is that the stress variable Pii is not located ex-
actly on the boundary; nevertheless the discrete stencil for Pii is
still a valid first-order approximation of the Pii at the boundary.

In summary, we have justified that all boundary stress variables can
be eliminated (and replaced with known constants) from the diver-
gence form of interior position equations. Notably, for equations
that are far enough from the traction boundary (specifically, those
that do not require any boundary stresses in Eq. (8)), this process
yields exactly the same results as the direct discretization of system
(5). A similar treatment is performed on the discretization of the
pressure equation Lp=μ

∑
i Fii + μ2

λ
p. Similar to stresses, the de-

formation gradients Fii are also characterized as interior or bound-
ary, based on whether they touch traction boundary variables. Since
Pii = 2μFii − μp − (2λ + dμ), we observe that Fii is boundary if
and only if the stress Pii is boundary (see Figure 7, right). For such
boundary gradients or stresses we can use the traction condition
Pii = ti to eliminate Fii from the pressure equation. This is ac-
complished by replacing Lp ← Lp− 1

2 (Pii − ti ) for every boundary
gradient Fii .

Our manipulations effectively remove all traction boundary vari-
ables from the discretization of the interior equations. For every
Dirichlet boundary variable, we assume a Dirichlet condition of
the form φi = ci is provided. Thus, we can substitute a given value
for every Dirichlet variable in the stencil of every interior equation
that uses it. As a result, our overall discrete system can be written as
L∗u∗ = b−bD = b∗, where u∗ only contains interior variables, and
bD results from moving the Dirichlet conditions to the right-hand
side. The discrete system matrix L∗ has as many rows and columns
as interior variables, and will differ from L near the boundaries, as
it incorporates the effect of the boundary conditions. An analysis of
our formulation can verify that L∗ has the form

L∗ =
(

Lφ G
GT Dp

)
.

In this formulation Lφ is symmetric, negative definite, and Dp is
a diagonal matrix with positive diagonal elements. As a final step,

we define the substitution matrix U

U =
(

I −GD−1
p

0 I

)

and use it to premultiply our equation as

UL∗u∗ =
(

Lφ − GD−1
p GT 0

GT Dp

)
u∗ = Ub∗. (12)

The top left block Lφ − GD−1
p GT is essentially a symmetric and

negative definite discretization of our nonaugmented system (3)
and can be smoothed via Gauss-Seidel iteration. The boundary and
interior regions are smoothed in separate sweeps; during the sweep
of the boundary smoother, all interior variables not being smoothed
are effectively treated as Dirichlet values. The boundary smoother
is confined in a narrow region between boundary conditions (vari-
ables of this narrow band are depicted in red in Figure 5, right).
This narrow support of the boundary smoother has a strong stabi-
lizing effect, and compensates for any difficulties encountered with
near-incompressible materials. In practice, we found that 2 Gauss-
Seidel boundary sweeps for every sweep of the distributive interior
smoother are sufficient for Poisson’s ratio up to ν = .45, while 3–4
Gauss-Seidel sweeps suffice for values as high as ν = .495. Finally,
we note that Gauss-Seidel is not the only option for smoothing the
discrete system derived in this section; in fact it is even possible to
use a distributive smoother as in Algorithm 2, taking care to restrict
the distribution stencil to active variables.

After completing the smoothing process, we need to update the
values of the pressure and traction boundary variables that were
previously annihilated. Since the lower right block of Eq. (12) is
diagonal, all pressure equations can be satisfied exactly via a simple
Gauss-Seidel sweep. Similarly, the boundary traction variables can
be updated using the traction conditions Pij = ti in a simple back-
substitution step, first updating variables on faces between interior
and exterior cells, and then variables located at half-cell distance
away from the interior region. Notably, at the end of the process
all boundary conditions are satisfied exactly (i.e., they will have
zero residuals), which simplifies our intergrid transfers discussed
next.

6. CONSTRUCTION OF THE TRANSFER
OPERATORS

We designed the Restriction (R) and Prolongation (P) operators
employed by Algorithm 1 aiming to keep implementation as in-
expensive as possible, while conforming to the textbook accuracy
requirements for full multigrid efficiency (see Trottenberg et al.
[2001]). We define the following 1D averaging operators.

B1u[x] = 1

2
u

[
x−h

2

]
+ 1

2
u

[
x+h

2

]

B2u[x] = 1

4
u[x−h] + 1

2
u[x] + 1

4
u[x+h]

B3u[x] = 1

8
u

[
x−3h

2

]
+ 3

8
u

[
x+h

2

]

+ 3

8
u

[
x−h

2

]
+ 1

8
u

[
x+3h

2

]
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Fig. 8. Boundary discrepancies in the fine (left) and coarse (right) do-
mains. On the right, red dots indicate locations containing Dirichlet con-
ditions on the coarse grid, but interior equations on the fine grid. On the
left, red dots indicate interior equations that would restrict residuals on
one or more locations occupied by Dirichlet conditions on the coarse grid;
those restricted residuals will be replaced with zero. Green circles indicate
fine interior variables that prolongate their correction from boundary coarse
variables.

The restriction and prolongation operators will be defined as tensor
product stencils of the preceding 1D operators as

R1 = B2 ⊗ B1 ⊗ B1 PT
1 = 8 B2 ⊗ B3 ⊗ B3

R2 = B1 ⊗ B2 ⊗ B1 PT
2 = 8 B3 ⊗ B2 ⊗ B3

R3 = B1 ⊗ B1 ⊗ B2 PT
3 = 8 B3 ⊗ B3 ⊗ B2

Rp = B1 ⊗ B1 ⊗ B1 PT
p = 8 B1 ⊗ B1 ⊗ B1

where Ri ,Pi are the restriction and prolongation operators used
for variable ui , respectively, and Rp ,Pp are the operators used for
the pressure variables. Our restriction and prolongation are not the
transpose of one another (as commonly done in other methods) but
this practice is not unusual or problematic; see, for example, Brandt
[1977]. Our domain description for the finest grid was based on a
partitioning of the cells into interior, exterior, and Dirichlet. The
coarse grid is derived from the natural 8-to-1 coarsening of the
Cartesian background lattice. Furthermore, a coarse cell is desig-
nated a Dirichlet cell if any of its eight fine subcells is Dirichlet. If
any of the fine subcells are interior and none is Dirichlet, the coarse
cell will be considered interior. Otherwise, the coarse cell is exte-
rior. Thus, the coarse active domain is geometrically a superset of
the fine, while its Dirichlet parts are extended. Despite this geomet-
rical discrepancy, which is no larger than the grid cell size, we were
still able to obtain a highly efficient multigrid scheme as described
next.

In our treatment of boundary conditions in Section 5.3 we ef-
fectively forced all boundary conditions to be satisfied exactly af-
ter every application of the smoother. In general, if a smoother
leaves a residual on the boundary conditions, this residual has to
be restricted. In our case all boundary residuals in the fine grid are
zero, thus all coarse boundary conditions will be homogeneous; for
Dirichlet equations they will have the form u2h

i = 0 (i.e., the coarse
grid incurs no correction), while traction equations will be of the
form P̂2h

ij = 0, where P̂ = μ(F + FT ) − μpI is the homogeneous
part of P. We also note that, due to the possible geometrical change
of the Dirichlet region, certain coarse Dirichlet equations will be
centered on locations that were interior in the fine grid (shown as
red dots in Figure 8, right). The fine grid interior equations (red
dots in Figure 8, left) that would restrict their residuals onto these
(now Dirichlet) coarse locations will not have their residuals well
represented on the coarse grid. We compensate for this inaccu-

racy by performing an extra 2–3 sweeps of our boundary Gauss-
Seidel smoother over these equations, driving their residuals very
close to zero, just prior to restriction. A similar inaccuracy may
affect the prolongation of the correction: as we previously men-
tioned, the active region may have extended more in the coarse
grid, compared to the fine. This discrepancy may introduce inac-
curacies in the coarse grid solution near such relocated boundaries.
Again, we compensate by performing an additional 2–3 Gauss-
Seidel smoother sweeps on the locations of the fine grid that prolon-
gate corrections from such relocated boundary variables (depicted
as green circles in Figure 8, left). This simple treatment proved
quite effective to guarantee a good coarse correction despite the
small geometrical discrepancies of the two domains.

7. COROTATIONAL LINEAR ELASTICITY

In the large deformation regime, and in the presence of large ro-
tational deformations, the linear elasticity model develops artifacts
such as volumetric distortions in parts of the domain with large ro-
tations. We provide an extension to the corotational linear elasticity
model, which has been used in slightly different forms by a num-
ber of authors in computer graphics [Müller et al. 2002; Hauth and
Strasser 2004; Müller and Gross 2004], and has also been used with
finite elements and multigrid by Georgii and Westermann [2006,
2008]. The corotational formulation extracts the rotational com-
ponent of the local deformation at a specific part of the domain
by computing the polar decomposition of the deformation gradient
tensor F = RS into the rotation R and the symmetric tensor S.
The stress is then computed as P = RPL (S), where PL denotes the
stress of a linear material, as described in Eq. (1). Thus, the coro-
tational formulation computes stresses by applying the constitutive
equation of linear elasticity in a frame of reference that is rotated
with the material deformation as follows.

P = RPL (S) = R
[
2μ(RT F−I) + λtr(RT F−I)I

]
= 2μ(F−R) + λtr(RT F−I)R

= 2μF + λtr(RT F)R − (2μ + dλ)R

= 2μF − μpR − (2μ + dλ)R (13)

where the last form of the stress in Eq. (13) results from introducing
an auxiliary pressure variable p = −(λ/μ)tr(RT F) similar to the
augmentation used for linear elasticity in Section 4.1. As before, the
augmented position equations are defined as ∂ j Pij= fi . Combining
with the pressure equations and rearranging we get(

2μ�I −μ(∇T RT )T

μ(R∇)T μ2

λ

) (
φ
p

)
=

(
f −(2μ+dλ)∇ · R

0

)
. (14)

The notation for the off-diagonal blocks of the matrix in Eq. (14)
was used to indicate whether the operators ∇, ∇T operate or not
on the rotation matrix R. In index form, these operators equal
[μ(∇T RT )T ]i = μ∂ j Rij, and [μ(R∇)T ]i = μRij∂ j respectively.
In contrast with the equations of linear elasticity, Eq. (14) is a non-
linear PDE, since both the operator matrix and the right-hand side
vector contain the rotation matrix R which depends on the current
deformation φ itself. We highlight this fact by writing this system
as L[u]u = f [u]. Nevertheless, for the purposes of a multigrid
scheme it is possible to treat system (14) as a linear equation, by
freezing the values of L and f for the duration of a V-cycle, and
updating them after a better solution to this frozen coefficient sys-
tem has been obtained. In an iterative fashion, we obtain the (k+1)-
th approximation to the solution of the linear system by executing
one V-cycle on the constant coefficient system L[uk]uk+1= f [uk]

ACM Transactions on Graphics, Vol. 29, No. 2, Article 16, Publication date: March 2010.



An Efficient Multigrid Method for the Simulation of High-Resolution Elastic Solids • 16:9

Fig. 9. Simulation of a human character driven by a kinematic skeleton.
The high-resolution rendering surface is seen in the left, while the simula-
tion lattice is depicted on the right (resolution: 142K nodes, grid spacing
9mm).

(or quasilinear form) of Eq. (14) in this context. We generalize the
distributive smoothing approach to the quasilinear Eq. (14). In this
case, the distribution matrix is

M =
(

I −(∇T RT )T

0 −2�

)
. (15)

Then, the distributed operator LM becomes

LM =
(

2μ�I 2μ
[
(∇T RT )T �−�(∇T RT )T

]
μ(R∇)T −μ

(
1 + 2μ

λ

)
�

)
. (16)

The top right block of LM would be equal to zero if R is a spa-
tially constant rotation, but not in the general case. However, near
a solution where the rotations are expected to be smooth, this value
is effectively zero, and LM becomes a triangular matrix, simi-
lar to the linear case. Effectively, even if the distributed system is
near-triangular, a Gauss-Seidel algorithm will still be an acceptable
smoother. In practice we found distributive Gauss-Seidel to be a
good smoother for the quasilinear problem at all times, although
the convergence rates were slightly lower away from the solution.

For the purposes of boundary smoothing, we again derive a sym-
metric definite discretization where Gauss-Seidel can be used. The
equations are written in the divergence form Li u = ∂ j Pij and
any exterior stresses are eliminated from the divergence stencil us-
ing an appropriate traction equation, as in Section 5.3. The only
complication is due to the fact that pressures are now multiplied
by the nondiagonal matrix R in the augmented stress definition
(13), thus off-diagonal stresses Pij (i �= j) require an edge cen-
tered pressure value. Since all exterior stresses have been removed,
the four incident cells to the edge in question are interior. Thus,
we compute the needed pressure value by averaging these four
neighboring pressures. Finally, pressure equations are written as
μRijφi, j + (μ2/λ)p = 0, indicating that all gradient values φi, j are
needed at a cell center. The stencil for off-diagonal gradients will
be averaged from the four neighboring edge centers, where they are
naturally defined. If any such gradient is external, we evaluate this
term as Rij Fij as a frozen coefficient and move it to the right-hand
side. The resulting discrete system of equations is symmetric and

Fig. 10. Comparison with alternative multigrid techniques. Convergence
rate is defined as the asymptotic residual reduction factor: |rk+1|/|rk |.

definite (after substitution of the pressures) and can be smoothed
with a Gauss-Seidel procedure as in Section 5.3.

8. DYNAMICS

The static formulation of elasticity disregards any dynamic effects.
Our method, however, can easily accommodate the simulation of
dynamic deformation; the effect of inertia actually improves the
conditioning of the discrete equations. For example, a backward
Euler implicit scheme updates positions as(

I − �t
m

(�t + γ )L
)

xn+1 = xn + �tvn − γ�t
m

Lxn .

Here, γ is the damping coefficient. Velocities are updated as
vn+1=(xn+1−xn)/�t . Up to scaling, this is equivalent to solving
the problem Lu − cφ = b. This system can also be augmented, by
adding the term −cI to the position equations of (5). Distributive
smoothing can be followed as before, where the bottom right term
−2� in the distribution matrix is now replaced by −2�+ c/μ. All
other formulations hold unchanged and convergence for this system
will be at least as good as the static case.

9. RESULTS AND EVALUATION

9.1 Evaluation of Solver Performance

We first compare the performance of our method with a Conjugate
Gradients (CG) solver, as illustrated in Figure 11. The left figure
plots the reduction of the residual for our synthetic test model: a
rectangular elastic box under mixed boundary conditions (also de-
picted in Figure 20, on the right). We use CG to solve the symmet-
ric, definite system resulting from the discretization of the (nonaug-
mented) PDE (3) using finite differences on staggered grids of sizes
323 and 643, for two different values of Poisson’s ratio ν. We ob-
serve that, after some initial progress, the convergence of CG slows
down significantly. This deterioration is more pronounced on cases
with more degrees of freedom, and higher incompressibility (which
are the focus points of our method). Replacing the finite differ-
ence discretization with trilinear, hexahedral finite elements (mid-
dle plot) still exhibits the same stagnation, particularly for the more
incompressible case. Our method (right plot), exhibits a practically
constant convergence rate all the way until the error is at the levels
of the floating point round-off threshold.

We subsequently compare our method with other multigrid tech-
niques (i.e., using different relaxation or discretization approaches),
in Figure 10. As a general comment, all methods evaluated here
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Fig. 11. Comparison of a CG solver on finite difference (left) or finite element (middle) discretizations, with our proposed method (right).

were able to achieve convergence rates that are largely indepen-
dent of the model resolution (in contrast with CG). As a point of
reference we include the convergence rate of 0.19 of a periodic 3D
Poisson problem with lexicographical Gauss-Seidel smoothing. We
first experimented with a staggered finite difference discretization
of Eq. (3) which did not, however, employ the augmentation of
Section 4.1. We observe that the convergence rate is deteriorating
with higher incompressibility, to reach a value of 0.9 for a mate-
rial with ν = 0.49. A similar behavior is observed with a tetrahe-
dral finite element discretization, used in place of finite differences.
These results are compatible with the findings of Griebel et al.
[2003] who observe similar problems with near-incompressibility
even for AMG solvers. Our method exhibits convergence rates of
0.26–0.28 even for highly incompressible materials. Apart from the
convergence experiments performed on our synthetic elastic box
example, Figures 10 and 11 include experiments performed on ir-
regular geometries such as the armadillo model of Figure 24 and
the human character of Figure 9. We further discuss the conver-
gence rates and runtimes of these irregular models in Section 9.3.

9.2 Discretization Accuracy Analysis

Our method simulates objects of irregular shapes by embedding
them in regular Cartesian lattices. Embedded simulation has been
a popular method for physics-based animation, using either Carte-
sian lattices [Müller et al. 2004; Rivers and James 2007] for sim-
plicity and efficiency, or tetrahedral embedding meshes for applica-
tions such as biomechanics [Lee et al. 2009] and fracture modeling
[Molino et al. 2004]. Although embedded models are computation-
ally efficient and easy to generate, conforming meshes generally
approximate the surface geometry of a model better than embedded
models of comparable resolution. Several authors have proposed
methods to compensate for this effect, for example, by resolving
collision and surface dynamics at a subelement level [Sifakis et al.
2007] or using an alternative interpolation method to generate the
embedded surface for rendering [Kaufmann et al. 2009]. In this
section we evaluate the accuracy of our embedded method against
a conforming discretization, and also compare our finite difference
method to an embedded discretization using finite elements.

For our accuracy analysis, we construct a 2D elasticity problem
with an analytically known solution. Our testing model is the disc
D = {(x, y) : (x − 0.5)2 + (y − 0.5)2 ≤ 0.252} and is deformed
according to the deformation function φ(X)=(φ1, φ2) defined as

(φ1(x, y), φ2(x, y)) = 2x√
π

(
cos

(πy
2

)
, sin

(πy
2

))
. (17)

We assume a linear elastic material. We substitute this analytic
form of the deformation function φ into the linear elasticity Eqs. (3)

Fig. 12. Illustration of the analytic deformation in our accuracy study. The
thick shaded boundary sections indicate Dirichlet boundary conditions. The
undeformed object is depicted on the left, the deformed state on the right.

Fig. 13. The three discretization methods in our comparative study. Left:
A conforming tessellation, discretized with the finite element method. Mid-
dle: An embedded finite element discretization on a triangular mesh. Right:
Our staggered finite difference method based on a Cartesian background
lattice.

to obtain the analytic expression of the elastic forces f . We treat
two quadrants of the outline of D (the thick shaded curves in
Figure 12) as Dirichlet boundary conditions, while the rest of the
boundary (the two unshaded quadrants of the outline) are treated
as traction boundaries. We analytically compute the traction value
along the circular boundary of D as t = PN where the stress P is
computed from Eq. (1) and N is the outward pointing normal. De-
spite its geometric simplicity, this test problem highlights certain
challenges related to embedding and discretization, especially for
large values of Poisson’s ratio, since the deformation prescribed
in Eq. (17) incurs substantial change of volume in different parts
of the domain (as seen in Figure 12) giving rise to large elastic
forces. We compare our embedded finite difference discretization
with two finite element discretizations, one defined on a conform-
ing tessellation of D, and one using an embedding triangular mesh,
as illustrated in Figure 13.

Since our test problem involves nonzero traction conditions on
the embedded boundary (in contrast with our other examples in
this article which use free boundaries, with zero traction) we need
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Fig. 14. Left: Boundary traction forces are barycentrically distributed to
the vertices of a triangular embedding mesh. Right: In our staggered dis-
cretization, each component of the traction force is bilinearly distributed to
the grid locations of the respective (staggered) variable.

to treat this traction condition properly for the embedded finite ele-
ment or finite difference grids. For these embedded discretizations,
we start by approximating the circular boundary of D (the green
curve in Figure 13) with a polygonal curve. We subsequently com-
pute a force for each segment of this polygonal curve that falls
within the part of the boundary where traction conditions are given.
This force is computed from the traction value as f = l·t where l
is the length of the segment. We distribute half of this force to each
endpoint of the segment; the traction condition is thus converted
into individual forces on the vertices of the embedded boundary.
Finally, we remap these forces from the polygonal boundary curve
back to the degrees of freedom of the embedding simulation mesh.
For a triangular embedding, this is accomplished by simply dis-
tributing the force from a vertex of the embedded boundary to the
three vertices of its containing simulation triangle, weighted by the
barycentric weights of the boundary location in the triangle (see
Figure 14, left). In our staggered Cartesian embedding the x and y
coordinates are embedded in two noncollocated lattices; thus, we
distribute the x component of the force (denoted as f1 in Figure 14,
right) to φ1 grid locations, weighted by the bilinear embedding
weights of the boundary location in this grid, while the y compo-
nent of the force (denoted as f2) will be similarly distributed to φ2

grid locations. After this remapping, traction forces that have been
mapped to locations of interior variables are scaled by 1/h2 (to re-
move the area weighting and convert them to force densities, as in
the PDE form of elasticity) and then added to the right-hand side
of the discrete equation Lφ = f , while forces mapped to bound-
ary variable locations are converted back into traction conditions
on the faces of the embedding grid as ti = fi (N · N ′)/h, where
N is the normal to the embedded boundary and N ′ is the normal
to boundary face of the embedding grid. Notably, for free (zero-
traction) boundaries, this treatment simply reduces to the method
described in Section 5.3.

Figure 16 illustrates the accuracy of the different discretization
methods in our test, for different resolutions and degrees of incom-
pressibility. Figure 15 plots the maximum error in the computed
discrete solution under different levels of refinement. Since a dis-
cretization with order of accuracy equal to κ bounds the error as
|e| = O(hκ ) and h ≈ N−1/2 where N is the number of vertices in a
uniform discretization, the asymptotic order of accuracy is approxi-
mated as κ ≈ −2 log |e|/ log N =−2m, where m is the slope of the
doubly-logarithmic plot of Figure 15. We emphasize that the order
of accuracy assessed in this section is completely independent of
the convergence rate of the solver used for each discretization (see
Section 9.1). The discrete problems formulated in this section were
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Fig. 15. Plots of the maximum solution error for various discretizations.
Solid lines indicate near-incompressible material parameters while dashed
lines correspond to low Poisson’s ratio. In this doubly-logarithmic plot, a
slope of −0.5 indicates a first-order accurate method. The asymptotic order
of accuracy observed from all six experiments ranges between 1.15−1.25.

solved to full convergence with an appropriate solver (multigrid or
conjugate gradients). Our findings are summarized as follows.

—Although the different discretizations under consideration start
with different levels of error for a base resolution, this er-
ror is asymptotically reduced at comparable rates under refine-
ment. We estimated an asymptotic order of accuracy between
1.15−1.25 from the tests plotted in Figure 15. This approximate
first-order accuracy is to be expected both from our finite dif-
ference scheme (due to the first-order treatment of the boundary)
and the finite element discretizations (due to the use of first-order
linear triangle elements; see, for example, Hughes [1987]).

—The conforming discretizations produced lower errors than
both the finite difference, and finite element-based embedded
discretizations. For materials with low Poisson’s ratio, our pro-
posed embedded method would require approximately 10−20
times more degrees of freedom to match the accuracy of the con-
forming discretization. For near-incompressible materials this
discrepancy is smaller, with our embedded method requiring ap-
proximately one extra grid refinement to reach the accuracy of
the conforming method. Of course, a comparison of the degrees
of freedom necessary for a given measure of accuracy does not
necessarily reflect the computational cost of each approach. Our
method typically leads to significantly reduced runtimes com-
pared to conforming tetrahedral FEM models with the same
number of degrees of freedom, due to the regularity of the dis-
cretization, convergence efficiency of the multigrid solver, and
improved numerical conditioning from our treatment of near-
incompressibility. These performance benefits are less evident
for low-resolution models (with up to a few thousand of degrees
of freedom) where a conforming model, if available, may offer
better accuracy per computation cost. For large models such as
the ones demonstrated in our examples in Section 9.3 our method
can significantly outperform conforming tetrahedral meshes for
the same degree of accuracy, even if our method requires a
higher number of degrees of freedom to achieve the same ac-
curacy. Finally, generating a good conforming tetrahedral model
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ν = 0.2 ν = 0.49

ν = 0.2 ν = 0.45

ν = 0.49

ν = 0.49ν = 0.2

Fig. 16. Convergence of different discretizations under refinement. The analytic solution is depicted in green, the discrete solution in red. The Poisson’s
ratio (ν) used for each experiment is given. Top row: A finite element discretization on a conforming triangle mesh. Compressible (ν = 0.2) and near-
incompressible (ν = 0.49) cases are shown. Second and third row: Embedded finite element simulation on a triangle mesh. An additional case of moderate
incompressibility (ν = 0.45) is illustrated. Bottom row: Our embedded finite difference method. Note that both the embedded boundary and the background
lattice are independently interpolated from the staggered deformation variables (not pictured). Also, the resolution in the rightmost column corresponds to
approximately the same number of degrees of freedom for all discretizations.
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Fig. 17. Close-up of the elbow joint from Figure 9. Left: Grid spacing
9mm (142K vertices). Embedding artifacts are visible on the surface. Mid-
dle: Padding the embedding cage with one additional layer of cells visibly
reduces the artifacts. Right: Surface artifacts are outright reduced using a
higher-resolution embedding cage (4.5mm spacing, 1.15M vertices).

Fig. 18. Comparison of trilinear (left) and tricubic interpolation (right) on
a coarse simulation. The embedding grid includes only 11K cells.

for detailed geometries such as those in Figures 25 and 27 is a
nontrivial meshing task which is not necessary in our embedded
scheme.

—We also observe a tendency for the error on the embedded dis-
cretizations to be more oscillatory near the boundary, compared
to the conforming case. These embedding artifacts are typi-
cally less pronounced with our method than with an embedded
finite element approach on near-incompressible materials (see
Figure 16), they are attenuated under refinement and can be sig-
nificantly reduced in practice by slightly padding the embedding
mesh outwards, typically by as little as one layer of cells (see
Figure 17).

—Our method matches or exceeds the accuracy of the embedded fi-
nite element discretization in our tests. The two embedded meth-
ods yield comparable accuracy for materials with low Poisson’s
ratio, especially in the asymptotic limit. For modest to high de-
grees of incompressibility, our method is noticeably more accu-
rate and less prone to embedding artifacts than the embedded

Fig. 19. Volumetric partitioning using colored blocks in a 2D domain.

Fig. 20. Surface partitioning of 3D models into colored surface patches.

finite element discretization at the same resolution. Finally, our
method performs similarly for materials of low and high incom-
pressibility, although the embedded boundary surface tends to be
slightly smoother for compressible materials.

Two important caveats should also be mentioned: The circular elas-
tic body in our test had a smooth boundary surface which was well
approximated by conforming tesselations even at low resolutions.
Highly detailed models with intricate features (see, e.g., Figures
25 and 27) would incur significantly higher approximation errors
for a conforming tesselation that does not descend to the resolu-
tion level necessary to resolve all the geometric detail. Secondly,
in our embedded examples we used the analytic expression of the
deformation field in Eq. (17) to specify Dirichlet boundary condi-
tions directly on the vertices of the embedding meshes. This can
be an acceptable practice for applications such as skeleton-driven
characters, where kinematic constraints have a volumetric extent
and can therefore be sampled at the locations of the simulation de-
grees of freedom. However, when Dirichlet conditions need to be
specified at subgrid locations and extrapolating these constraints
to simulation vertices is not convenient, conforming meshes that
resolve the constraint surface would be at an advantage. In future
work we will investigate adding embedded soft-constraints in our
framework (see, e.g., Sifakis et al. [2007]) to provide this addi-
tional flexibility. Finally, in our tests we considered discretizations
of approximately uniform density (even when the mesh topology
was irregular). It is also possible to use an adaptive discretization,
either in the form of an adaptive conforming tesselation or an adap-
tive finite difference scheme (see, e.g., Losasso et al. [2004]). In
fact, there are well-established multigrid methods that operate in
conjunction with adaptive discretizations [Brandt 1977], and we
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Fig. 21. Parallel scaling on a Larrabee simulator for a number of differ-
ent configurations. NcM t indicates a simulated platform with N cores and
M threads/core. Prolongation/restriction were serialized on grids 323 and
smaller. “Core 2” indicates the speedup of a single-threaded execution on
an Intel Core 2 processor at the same clock frequency as the simulated
platform.

believe the elasticity solver proposed in this article can be sim-
ilarly applied to adaptive (e.g., octree) discretizations. We defer
this extension to future work, along with a principed comparative
evaluation of different adaptive discretization schemes for elas-
ticity, especially in light of the nontrivial implications adaptivity
may have on accuracy, numerical conditioning, and potential for
parallelization.

9.3 Animation Tests

In addition to our comparative benchmarks, we tested our
method on models with elaborate, irregular geometries. Figure 9
demonstrates the simulation of flesh of a human character with
keyframed skeleton motion. The model was simulated at 2 resolu-
tions yielding V-cycle times of 0.62sec for a 142K vertex model
(pictured in Figure 9), and 3.48sec for a larger resolution with
1.15M vertices (Figure 17, right). The convergence rate for this
example, as seen in Figures 11(right) and 10, was slightly bet-
ter than our synthetic box examples at 0.24. We attribute this re-
sult to the extensive Dirichlet regions throughout the body induced
by the kinematic skeleton, which stabilize the model and allow
for highly efficient smoothing. In contrast, the armadillo model of
Figure 24 is very weakly constrained, with Dirichlet regions de-
fined only over the hands and feet (see also Griebel et al. [2003] for
a discussion of suboptimal smoothing performance with dominat-
ing traction boundaries). In this model with extensive zero-traction
boundary conditions, our method exhibited convergence rates be-
tween 0.21–0.35 for the first 7–8 V-cycles after a large perturba-
tion; at that point the residual had been reduced by four orders of
magnitude and the model had visually reached convergence after
just the first few iterations. Subsequent V-cycles would ultimately
settle at an asymptotic rate of 0.62 which could be improved by
increasing the intensity of the boundary smoother, although this
was not pursued since the model was already well converged and
the extra smoothing cost would not be practically justified. With
typical incremental motion of the boundary conditions, 1–2 V-
cycles per frame would be enough to produce a visually converged
animation.

Figure 10 also reports the convergence rates for the armadillo
model of Figure 24 simulated using corotational linear elasticity.
Since the coefficients of the discrete system vary with the current
configuration, the convergence rate is also variable. Additionally,
the residual of the quasilinearized system will differ from its actual
nonlinear counterpart; this discrepancy will also depend on whether

Fig. 22. Single-core execution profiles. (*) The cost of the operator update
was amortized based on 1 update every 5 V-cycles.

Fig. 23. Scaling performance of the linear elasticity multigrid solver on
multiprocessor systems (Intel X5365: 3.0Ghz, 8-core, 32GB RAM, Intel
X7350: 3.0Ghz, 16-core, 32GB RAM). Measurements correspond to com-
plete V-cycle times in seconds.

the quasilinearization process is close to convergence. The rates re-
ported are typical of the animations shown, assuming 2 V-cycles
per frame, and update of the quasilinearization every 5 V-cycles.
The average runtime was 5.1sec per V-cycle, 10.2sec/frame (with
2 V-cycles). For comparison, we also simulated the tetrahedral ar-
madillo model of Teran et al. [2005] using the quasistatic solver
described in their paper. This tetrahedral model contains 380K tets
and 76K vertices, thus contains approximately one quarter of the
degrees of freedom of our embedded model in Figure 24. For a
Poisson’s ratio of 0.4 each Newton-Raphson iteration (which in-
cludes a CG solve) required approximately 8.7sec while 5 New-
ton iterations per frame were required for acceptable convergence,
leading to an approximate cost of 43.5sec/frame.

We also demonstrate examples of fully dynamic simulation. In
Figure 26, a 43K vertex car model is simulated using the static
elasticity equations, as well as the dynamic scheme of Section 8.
As expected, the convergence rate for the backward Euler system
was significantly faster than our static problem (due to the addition
of the identity term in the system matrix). Using a time step �t
equal to the frame time, our observed convergence rate was 0.08.
Figure 27 illustrates the dynamic simulation of an elastic dragon
figurine. The embedding grid has 402K cells/voxels and simulation
cost is 8.2sec/frame. Figure 25 illustrates a high-velocity impact of
a rigid body on a face model. The embedding grid contains 915K
cells/voxels and simulation cost is 21sec/frame. We note that no ex-
plicit collision handling was performed for this example; instead,
the degrees of freedom of the face that came in contact with the im-
pacting object were kinematically prescribed to move with it for the
duration of the impact. For these dynamic simulations just a single
V-cycle per frame was sufficient, due to the better conditioning of
the backward Euler equations. Additionally, Figure 22 provides a
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Fig. 24. Quasistatic simulation of armadillo model with corotational linear elasticity. Resolution: 302K cells.

Fig. 25. Dynamic simulation of an object impacting a face at high velocity. Modeled as a thick layer of flesh (no skull) using corotational linear elasticity.
The embedding simulation cage contains 915K cells. The high-resolution embedded surface contains 10.1M triangles.

Fig. 26. Dynamic simulation of a soft elastic car model deforming under kinematic constraints, using linear elasticity. Resolution: 43K cells.

Fig. 27. Embedded animation of a deformable dragon shaking his head, using corotational linear elasticity and simulation of dynamics. The embedded
surface contains 7.2M triangles, while the simulated embedding cage has 402K cells (close-up pictured on the right).
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detailed breakdown of the execution cost of the individual subrou-
tines on some of our benchmarks.

Finally, we note that usual trilinear interpolation would infre-
quently give rise to visual artifacts. Such artifacts would sur-
face in simulations where the resolution of the embedding grid
was substantially coarser than that of the embedded surface (see,
e.g., Figure 18) and in conjunction with very extreme deforma-
tion. Since trilinear interpolation does not produce continuous
derivatives, surface normals would exhibit visible discontinuities
in these cases. We found that using tricubic interpolation as in
Lekien and Marsden [2005] effectively eliminates this problem,
as seen in Figure 18. Notably, their method is based on evaluating
higher-order derivatives at the nodes of the interpolation lattice, a
process that is trivially implemented with finite differences in our
regular discretization.

9.4 Parallelization

Our discretization of elasticity and the multigrid solver proposed
in our article possess a number of characteristics that favor par-
allelism and scalable performance. The use of regular grids pro-
motes locality, allows operations such as smoothing and transfer
between grids to be implemented as streaming operations, and al-
lows for easy domain partitioning based on the background grid.
Indirect memory access is avoided since we do not use an ex-
plicit mesh to represent the simulated model. In addition, the reg-
ularity of the discrete equations enables a compact storage of the
matrix in our linear system. For example, in the case of linear
elasticity, all interior equations use the same stencil, thus there
is no need to store a separate equation per grid location; this al-
lows for a small memory footprint, even for large domains (see
Figure 23). In the case of corotational linear elasticity, only the ro-
tation field needs to be stored and updated on the grid, while the
system matrix can be built on-the-fly. We evaluated the potential
of our algorithm for parallel performance by multithreading a spe-
cific test problem on shared memory platforms. In this section we
describe our parallelization methodology and present performance
measurements.

Parallelization of the components of the multigrid solver is based
on an appropriate domain decomposition. Operations such as the
interior (distributive) smoother, the computation and restriction of
residuals, and prolongation of the coarse-grid correction are per-
formed throughout the volumetric extent of the simulated model.
Consequently, these subroutines require a volumetric partitioning
of the simulation domain. This is simply accomplished by parti-
tioning the background Cartesian grid into rectangular blocks, as
depicted in the 2D illustration of Figure 19, which can then be
processed by separate threads. However, operations such as the
smoother incur data dependencies between neighboring blocks. In
lieu of locking, we employ a coloring of the blocks (4 colors are
used in the 2D example of Figure 19, 8 colors would be used in
3D) such that no two blocks of the same color are neighboring.
All blocks of the same color can be processed in parallel with-
out data dependencies, while different color groups are processed
in sequence. The optimal block size depends on the desired num-
ber of blocks per color group (to allow simultaneous use of more
processing threads) and the properties of the memory subsystem.
For example, rectangular blocks of 16 × 8 × 8 cells will align
well with 512-bit cache lines (16 × 4-byte floats) while provid-
ing a few tens of blocks per color for problems in the order of 105

nodes.
Additionally, the rectangular shape of these blocks simplifies

their traversal, as this can simply be performed with a triple loop

over fixed index ranges. Such static loops yield improved cache
and prefetching performance, and facilitate vectorization (either ex-
plicitly or as a compiler optimization). Care needs to be taken for
blocks that include the domain boundaries, since some of their cells
are outside the active simulation domain. In order to retain the ben-
efits of traversing the block with a static triple loop, we perform the
operation in question (i.e., smoothing, residual computation, inter-
grid transfer) for all cells of a block, but only write the output of
this operation conditionally on the value of a bitmap that indicates
active/inactive grid locations. Finally, there are certain subroutines
of our multigrid solver (e.g., boundary smoothing) that operate on
a band around the surface of the object. Since a volumetric par-
titioning could be inefficient and unbalanced for these operations,
we perform a separate partitioning of the surface of the object. A
chromatic grouping of these surface partitions is precomputed, as
seen in Figure 20, to allow all blocks withing a color group to be
processed in parallel without locking.

We evaluated the potential of our algorithm for parallel perfor-
mance using a multithreaded version of our solver on the follow-
ing shared-memory platforms: an 8-core SMP workstation with
3.0GHz Intel X5365 Xeon processors, a 16-core SMP server with
2.93GHz Intel X7350 CPUs, and a cycle-accurate performance
simulator for the x86-based many-core Intel architecture code-
named Larrabee. Our benchmarks were based on our synthetic elas-
tic box example, under high incompressibility (ν = .48), with
mixed boundary conditions and at resolutions ranging from 323

to 2563 vertices. Figure 23 illustrates the speedup of our bench-
marks, and associated working set sizes, on the 8- and 16-core
SMPs. Figure 21 illustrates the speedup of individual subroutines
on the Larrabee simulator, for two different problem sizes and at
configurations up to 32 cores, with 4 threads/core. We note that
the utilization of more than 1 thread per core does not increase the
computational bandwidth (instructions are sequentially dispatched
from different threads), but serves to hide instruction and mem-
ory latencies. Although we did not exploit the SIMD capacity of
Larrabee in this experiment, the memory utilization was at a low
0.5GB/Gcycles per core, demonstrating there is a substantial mem-
ory bandwidth margin to allow vectorization to further improve the
performance of our solver.

10. CONCLUSION

Our multigrid framework allows for the efficient simulation of de-
formable materials with many degrees of freedom over a wide
range of material parameters including the near-incompresible limit
and our finite difference discretization naturally accommodates ar-
bitrary irregular geometries. However, the strength of the approach
would be improved with the generalization to arbitrary hyperelas-
tic constitutive models. We also plan to investigate efficient self-
collision detection and handling techniques that will not become a
performance bottleneck, given the efficiency of the elasticity solver.
Multi-resolution collision detection and response techniques (e.g.,
Otaduy et al. [2007]) would be expected to be the most compat-
ible candidates. In addition, if a penalty-based collision response
were desired, the embedded treatment of nonzero traction condi-
tions described in Section 9.2 can be used to apply those penalty
forces at subcell resolution. Finally, although our initial investiga-
tion has demonstrated excellent potential for scaling on many-core
platforms, a more principled investigation needs to assess the per-
formance of our method platforms with SIMD capability, and ad-
dress a broader spectrum of constitutive behaviors and interacting
geometries.
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simple framework for adaptive simulation. ACM Trans. Graph. 21, 281–
290.

HARLOW, F. AND WELCH, J. 1965. Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface. Phys.
Fluids 8, 2182–2189.

HAUTH, M. AND STRASSER, W. 2004. Corotational Simulation of De-
formable Solids. In Proceedings of the International Conferences in Cen-
tral Europe on Computer Graphics, Visualization and Computer Vision
(WSCG). 137–145.

HUGHES, C., GRZESZCZUK, R., SIFAKIS, E., KIM, D., KUMAR, S.,
SELLE, A., CHHUGANI, J., HOLLIMAN, M., AND CHEN, Y.-K. 2007.
Physical simulation for animation and visual effects: Parallelization and
characterization for chip multiprocessors. In Proceedings of the Interna-
tional Symposium on Computer Architecture.

HUGHES, T. 1987. The Finite Element Method: Linear Static and Dy-
namic Finite Element Analysis. Prentice Hall.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Volume con-
serving finite element simulations of deformable models. ACM Trans.
Graph. 26, 3.

JAMES, D. AND FATAHALIAN, K. 2003. Precomputing interactive dy-
namic deformable scenes. ACM Trans. Graph. 22, 879–887.

KAUFMANN, P., MARTIN, S., BOTSCH, M., AND GROSS, M. 2008.
Flexible Simulation of Deformable Models Using Discontinuous
Galerkin FEM. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.

KAUFMANN, P., MARTIN, S., BOTSCH, M., AND GROSS, M. 2009.
Flexible simulation of deformable models using discontinuous Galerkin
FEM. Graph. Models 71, 4, 153–167.

KAZHDAN, M. AND HOPPE, H. 2008. Streaming multigrid for
gradient-domain operations on large images. ACM Trans. Graph.
27, 3.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Comprehen-
sive biomechanical modeling and simulation of the upper body. ACM
Trans. Graph. 28, 4, 1–17.

LEKIEN, F. AND MARSDEN, J. 2005. Tricubic interpolation in three
dimensions. Int. J. Numer. Methods Engin. 63, 3, 455–471.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water
and smoke with an octree data structure. ACM Trans. Graph. 23, 457–
462.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node al-
gorithm for changing mesh topology during simulation. ACM Trans.
Graph. 23, 385–392.
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